本文经机器之心(微信公众号:almosthuman2014)授权转载,禁止二次转载。
项目地址:http://nvdla.org/
NVDLA 硬件提供了一个简单、灵活和鲁棒的推断加速解决方案。NVDLA 硬件支持各种性能水平,并能轻松地从小型、成本敏感的物联网设备(IoT)扩展到大型性能指向型的 IoT 应用范围。NVDLA 基于开放工业标准提供一组 IP-core 模型:Verilog 模型为 RTL 形式下的综合模拟模型、TLM SystemC 模拟模型能用于软件部署、系统集成和测试。NVDLA 软件生态系统包括设备内的软件堆栈(部分为开源版)、用于构建结合深度学习新模型的完整训练基础设施以及可以将现有模型转换为设备可用的软件解析器。
NVDLA 引入了一个模块架构以简化配置、集成和可移植性,这主要是因为该构建块能用于加速核心深度学习推断运算。NVDLA 硬件主要由以下几个模块组成:
这些模块都是分离的和独立配置的,每个单元的调度操作都被委派给协同处理器(co-processor)或中央处理器,它们可以以非常细粒度的调度边界进行操作,因此每一个单元操作都是独立的。此外,密切管理的调度需要通过外加专用管理协同处理器成为 NVDLA 子系统的一部分。因此,NVDLA 硬件架构能够服务于各种大小的实现。
NVDLA 硬件利用标准实践与系统的其余部分进行接口交互:控制通道以实现寄存器文件和中断接口,并使用一对标准的 AXI 总线接口与存储器进行交互。此外,异构存储器接口可实现不同类型主机系统之间的额外灵活性。
NVDLA 实现一般可分为两个类别:
下图 1 的 Small 系统模型,展示了 NVDLA headless 的实现示例,Large 系统模型展示了有理解力的实现。前者是对成本敏感的设备建立的实现,后者增加了一个专门的控制协同处理器和高带宽 SRAM 支持的 NVDLA 子系统。Large 系统模型更面向可一次性运行许多任务的高性能 IoT 设备。
图 1:两个可能的 NVDLA 系统对比
NVDLA 架构可被编成进两种运算模式:独立模式、融合模式。
图 2:NVDLA 核心的内部架构
据介绍,全部软件生态系统都支持 NVDLA,包括设备上软件堆栈、NVDLA 开源发布的部分软件。此外英伟达也将提供完整的训练基础设施,来建立融合深度学习的全新模型,并将已有的模型转换为 NVDLA 软件可用的形式。常见流程图如下图所示:
图 3:NVDAL系统软件内部的数据流程图
原文地址:http://nvdla.org/primer.html
原文来自:机器之心
声明:所有来源为“聚合数据”的内容信息,未经本网许可,不得转载!如对内容有异议或投诉,请与我们联系。邮箱:marketing@think-land.com
通过出发地、目的地、出发日期等信息查询航班信息。
通过站到站查询火车班次时刻表等信息,同时已集成至聚合MCP Server。火车票订票MCP不仅能赋予你的Agent火车时刻查询,还能支持在线订票能力。
通过车辆vin码查询车辆的过户次数等相关信息
验证银行卡、身份证、姓名、手机号是否一致并返回账户类型
查询个人是否存在高风险行为