本文经机器之心(微信公众号:almosthuman2014)授权转载,禁止二次转载。
对新手来说 Python 可视化实在有些令人挫败。有很多不同的选项,如何选择正确的选项是一个挑战。例如,两年前这篇文章《Overview of Python Visualization Tools》仍然吸引了大量读者。在那篇文章中,我否定了 Matplotlib。但是,在使用过 pandas、scikit-learn、seaborn 和其他 Python 数据科学包之后,我觉得之前否认 Matplotlib 的行为有点不成熟。坦白讲,当时我不是很了解 Matplotlib,也不懂如何在我的工作流中高效使用 Matplotlib。
现在我学习了一些工具,了解了如何基于 Matplotlib 使用这些工具,Matplotlib 逐渐变成了可视化工具的核心。本文将展示如何使用 Matplotlib。我坚定地认为 Matplotlib 是 Python 数据科学包必不可少的一部分,希望这篇文章可以帮助大家了解如何使用 Matplotlib 进行 Python 可视化。
我认为,Matplotlib 对于新手来说比较难存在几个原因。首先,Matplotlib 有两个界面。第一个界面基于 MATLAB,使用基于状态的接口。第二个界面是面向对象的接口。本文就不展开介绍 Matplotlib 有两个界面的原因,但了解这两种方法在使用 Matplotlib 绘图时会很重要。两个界面会引起混淆的原因可以通过 Stack Overflow 和谷歌搜索查找一些信息。此外,新用户将发现混淆问题有多个解决方案,但是这些问题看起来类似却不完全相同。从我的个人经验来讲,我们从以前的代码中可以看出有一些 Matplotlib 代码的混杂。
Matplotlib 新手应该学习和使用面向对象的接口。
使用 Matplotlib 的另一个历史性挑战是一些默认的样式缺乏吸引力。在 R 使用 ggplot 就可以生成相当不错的图,而 Matplotlib 相对来说有点丑。好消息是 Matplotlib 2.0 中的样式好看了很多,你可以用最小的努力生成可视化。
第三个挑战是你不确定什么时候该使用 Matplotlib,什么时候该使用基于 Matplotlib 构建的工具,如 pandas 或 seaborn。大部分时候做一件事都有多种选择,但是对于新手来说选择正确的道路有些困难。
尽管 Matplotlib 有这么多问题,我还是喜欢用它。因为它很强大,这个库允许你创建几乎所有的可视化图表。此外,围绕 Matplotlib 有一个丰富的 Python 工具生态环境,很多更高级的可视化工具使用 Matplotlib 作为基础库。因此如果你想在 Python 数据科学工具包中进行任何操作,你需要对如何使用 Matplotlib 有一些基础了解。这就是本文其余部分的重点,提供一种高效使用 Matplotlib 的基础方法。
推荐以下步骤学习如何使用 Matplotlib:
下图非常重要,有助于理解图的不同术语。
大部分术语很直接易懂,需要牢记的是 Figure 是可能包含一或多个 axes 的最终图像。Axes 代表单个图。一旦你理解这些是什么以及如何通过面向对象的 API 评估它们,其余步骤就很简单了。
了解这个知识还有一个好处,就是当你在网络上看东西的时候有一个出发点。如果你花时间了解了这个点,那么其他的 Matplotlib API 才有意义。此外,很多高级 Python 包,如 seaborn 和 ggplot 依赖于 Matplotlib 构建,因此理解了基础,学习更强大的框架才更加容易。
最后,我不是说你应该逃避其他优秀选项,如 ggplot(又名 ggpy)、bokeh、plotly 或 altair。我只是认为你需要对 matplotlib + pandas + seaborn 有一个基础的了解。了解基础可视化栈之后,你就可以探索其他优秀工具,根据需求做出合适的选择。
下面主要介绍如何在 pandas 中创建基础的可视化以及使用 Matplotlib 定制最常用的项。了解基础流程有助于更直观地进行自定义。
我主要关注最常见的绘图任务,如标注轴、调整图形界限(limit)、更新图标题、保存图像和调整图例。
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.ticker import FuncFormatter
df = pd.read_excel("https://github.com/chris1610/pbpython/blob/master/data/sample-salesv3.xlsx?raw=true")
df.head()
数据包括 2014 年的销售交易额。为简短起见,我将总结这些数据,列出前十名客户的采购次数和交易额。绘图时我将对各列进行重命名。
top_10 = (df.groupby('name')['ext price', 'quantity'].agg({'ext price': 'sum', 'quantity': 'count'})
.sort_values(by='ext price', ascending=False))[:10].reset_index()
top_10.rename(columns={'name': 'Name', 'ext price': 'Sales', 'quantity': 'Purchases'}, inplace=True)
现在数据以简单的表格形式呈现,我们再来看一下如何将数据绘制成条形图。如前所述,Matplotlib 具备多种不同风格,可用于渲染图表。你可以使用 plt.style.available 查看你的系统可用的风格。
plt.style.available
['seaborn-dark',
'seaborn-dark-palette',
'fivethirtyeight',
'seaborn-whitegrid',
'seaborn-darkgrid',
'seaborn',
'bmh',
'classic',
'seaborn-colorblind',
'seaborn-muted',
'seaborn-white',
'seaborn-talk',
'grayscale',
'dark_background',
'seaborn-deep',
'seaborn-bright',
'ggplot',
'seaborn-paper',
'seaborn-notebook',
'seaborn-poster',
'seaborn-ticks',
'seaborn-pastel']
使用如下简单风格:
plt.style.use('ggplot')
现在我们有了好看的风格,第一步就是使用标准 pandas 绘图函数绘制数据:
top_10.plot(kind='barh', y="Sales", x="Name")
推荐使用 pandas 绘图的原因在于它是一种快速便捷地建立可视化原型的方式。
如果你对该图表的重要部分都很满意,那么下一步就是对它执行自定义。一些自定义(如添加标题和标签)可以使用 pandas plot 函数轻松搞定。但是,你可能会发现自己需要在某个时刻跳出来。这就是我推荐你养成以下习惯的原因:
fig, ax = plt.subplots()
top_10.plot(kind='barh', y="Sales", x="Name", ax=ax)
生成的图表和原始图表基本一样,不过我们向 plt.subplots() 添加了一个额外的调用,并将 ax 传输至绘图函数。因此,通过 ax 或 fig 对象可以执行任何自定义。
我们利用 pandas 实现快速绘图,现在利用 Matplotlib 获取所有功能。通过使用命名惯例,调整别人的解决方案适应自己的需求变得更加直接简单了。
fig, ax = plt.subplots()
top_10.plot(kind='barh', y="Sales", x="Name", ax=ax)
ax.set_xlim([-10000, 140000])
ax.set_xlabel('Total Revenue')
ax.set_ylabel('Customer');
这是另一种改变标题和标签的简单方式:
fig, ax = plt.subplots()
top_10.plot(kind='barh', y="Sales", x="Name", ax=ax)
ax.set_xlim([-10000, 140000])
ax.set(title='2014 Revenue', xlabel='Total Revenue', ylabel='Customer')
为了进一步展示该方法,我们还可以使用 plt.subplots() 函数可以定义图像尺寸,一般以英寸为单位。我们还可以使用 ax.legend().set_visible(False) 移除图例。
fig, ax = plt.subplots(figsize=(5, 6))
top_10.plot(kind='barh', y="Sales", x="Name", ax=ax)
ax.set_xlim([-10000, 140000])
ax.set(title='2014 Revenue', xlabel='Total Revenue')
ax.legend().set_visible(False)
要想修改这个图像,你可能需要执行很多操作。图中最碍眼的可能是总收益额的格式。Matplotlib 可以使用 FuncFormatter 解决这一问题。该函数用途多样,允许用户定义的函数应用到值,并返回格式美观的字符串。
以下是货币格式化函数,用于处理数十万美元区间的数值:
def currency(x, pos):
'The two args are the value and tick position'
if x >= 1000000:
return '${:1.1f}M'.format(x*1e-6)
return '${:1.0f}K'.format(x*1e-3)
现在我们有了格式化程序函数,就需要定义它,并将其应用到 x 轴。完整代码如下:
fig, ax = plt.subplots()
top_10.plot(kind='barh', y="Sales", x="Name", ax=ax)
ax.set_xlim([-10000, 140000])
ax.set(title='2014 Revenue', xlabel='Total Revenue', ylabel='Customer')
formatter = FuncFormatter(currency)
ax.xaxis.set_major_formatter(formatter)
ax.legend().set_visible(False)
这张图美观多了,非常好地展示了自定义问题解决方案的灵活性。最后要说的自定义特征是向图表添加注释。你可以使用 ax.axvline() 画垂直线,使用 ax.text() 添加自定义文本。就以上示例,我们可以画一条表示平均值的线,包括代表 3 个新客户的标签。以下是完整代码:
# Create the figure and the axes
fig, ax = plt.subplots()
# Plot the data and get the averaged
top_10.plot(kind='barh', y="Sales", x="Name", ax=ax)
avg = top_10['Sales'].mean()
# Set limits and labels
ax.set_xlim([-10000, 140000])
ax.set(title='2014 Revenue', xlabel='Total Revenue', ylabel='Customer')
# Add a line for the average
ax.axvline(x=avg, color='b', label='Average', linestyle='--', linewidth=1)
# Annotate the new customers
for cust in [3, 5, 8]:
ax.text(115000, cust, "New Customer")
# Format the currency
formatter = FuncFormatter(currency)
ax.xaxis.set_major_formatter(formatter)
# Hide the legend
ax.legend().set_visible(False)
目前,我们所做的所有改变都是针对单个图表。我们还能够在图像上添加多个表,使用不同的选项保存整个图像。
如果我们确定要在同一个图像上放置两个表,那么我们应该对如何做有一个基础了解。首先,创建图像,然后创建轴,再将它们绘制成图表。使用 plt.subplots() 可以完成该操作:
fig, (ax0, ax1) = plt.subplots(nrows=1, ncols=2, sharey=True, figsize=(7, 4))
在这个例子中,我使用 nrows 和 ncols 指定大小,这对新用户来说比较清晰易懂。我还使用 sharey=True 以使 y 轴共享相同的标签。
该示例很灵活,因为不同的轴可以解压成 ax0 和 ax1。现在我们有了这些轴,就可以像上述示例中那样绘图,然后把一个图放在 ax0 上,另一个图放在 ax1。
# Get the figure and the axes
fig, (ax0, ax1) = plt.subplots(nrows=1,ncols=2, sharey=True, figsize=(7, 4))
top_10.plot(kind='barh', y="Sales", x="Name", ax=ax0)
ax0.set_xlim([-10000, 140000])
ax0.set(title='Revenue', xlabel='Total Revenue', ylabel='Customers')
# Plot the average as a vertical line
avg = top_10['Sales'].mean()
ax0.axvline(x=avg, color='b', label='Average', linestyle='--', linewidth=1)
# Repeat for the unit plot
top_10.plot(kind='barh', y="Purchases", x="Name", ax=ax1)
avg = top_10['Purchases'].mean()
ax1.set(title='Units', xlabel='Total Units', ylabel='')
ax1.axvline(x=avg, color='b', label='Average', linestyle='--', linewidth=1)
# Title the figure
fig.suptitle('2014 Sales Analysis', fontsize=14, fontweight='bold');
# Hide the legends
ax1.legend().set_visible(False)
ax0.legend().set_visible(False)
现在,我已经在 jupyter notebook 中用 %matplotlib inline 展示了很多图像。但是,在很多情况下你需要以特定格式保存图像,将其和其他呈现方式整合在一起。
Matplotlib 支持多种不同文件保存格式。你可以使用 fig.canvas.get_supported_filetypes() 查看系统支持的文件格式:
fig.canvas.get_supported_filetypes()
{'eps': 'Encapsulated Postscript',
'jpeg': 'Joint Photographic Experts Group',
'jpg': 'Joint Photographic Experts Group',
'pdf': 'Portable Document Format',
'pgf': 'PGF code for LaTeX',
'png': 'Portable Network Graphics',
'ps': 'Postscript',
'raw': 'Raw RGBA bitmap',
'rgba': 'Raw RGBA bitmap',
'svg': 'Scalable Vector Graphics',
'svgz': 'Scalable Vector Graphics',
'tif': 'Tagged Image File Format',
'tiff': 'Tagged Image File Format'}
我们有 fig 对象,因此我们可以将图像保存成多种格式:
fig.savefig('sales.png', transparent=False, dpi=80, bbox_inches="tight")
该版本将图表保存为不透明背景的 png 文件。我还指定 dpi 和 bbox_inches="tight" 以最小化多余空白。最后,希望该方法可以帮助大家理解如何更有效地使用 Matplotlib 进行日常数据分析。
原文来自:机器之心
声明:所有来源为“聚合数据”的内容信息,未经本网许可,不得转载!如对内容有异议或投诉,请与我们联系。邮箱:marketing@think-land.com
涉农贷款地址识别,支持对私和对公两种方式。输入地址的行政区划越完整,识别准确度越高。
根据给定的手机号、姓名、身份证、人像图片核验是否一致
通过企业关键词查询企业涉讼详情,如裁判文书、开庭公告、执行公告、失信公告、案件流程等等。
IP反查域名是通过IP查询相关联的域名信息的功能,它提供IP地址历史上绑定过的域名信息。
结合权威身份认证的精准人脸风险查询服务,提升人脸应用及身份认证生态的安全性。人脸风险情报库,覆盖范围广、准确性高,数据权威可靠。