.NET Core(开放源代码,跨平台,x-copy可部署等)有许多令人兴奋的方面,其中最值得称赞的就是其性能了。感谢所有社区开发人员对.NET Core做出的贡献,其中的许多改进也将在接下来的几个版本中引入.NET Framework。本文主要介绍.NET Core中的一些性能改进,特别是.NET Core 2.0中的,重点介绍各个核心库的一些示例。
集合是任何应用程序的基石,同时.NET库中也有大量集合。.NET库中的一些改进是为了消除开销,例如简化操作以便更好的实现内联,减少指令数量等。例如,下面的这个使用Q<T>的例子:
using System;
using System.Diagnostics;
using System.Collections.Generic;
public class Test
{
public static void Main()
{
while (true)
{
var q = new Queue<int>();
var sw = Stopwatch.StartNew();
for (int i = 0; i < 100_000_000; i++)
{
q.Enqueue(i);
q.Dequeue();
}
Console.WriteLine(sw.Elapsed);
}
}
}
PR dotnet/corefx #2515移除了这些操作中相对复杂的模数运算,在个人计算机,以上代码在.NET 4.7上产生如下输出:
00:00:00.9392595
00:00:00.9390453
00:00:00.9455784
00:00:00.9508294
00:00:01.0107745
而使用.NET Core 2.0则会产生如下输出:
00:00:00.5514887
00:00:00.5662477
00:00:00.5627481
00:00:00.5685286
00:00:00.5262378
由于这是挂钟时间所节省的,较小的值计算的更快,这也表明吞吐量增加了约2倍!
在其他情况下,通过更改操作算法的复杂性,可以更快地进行操作。编写软件时,最初编写的一个简单实现,虽然是正确的,但是这样实现往往不能表现出最佳的性能,直到特定的场景出现时,才考虑如何提高性能。例如,SortedSet <T>的ctor最初以相对简单的方式编写,由于使用O(N ^ 2)算法来处理重复项,因此不能很好地处理复杂性。该算法在PRnetnet / corefx#1955中的.NET Core中得到修复。以下简短的程序说明了修复的区别:
using System;
using System.Diagnostics;
using System.Collections.Generic;
using System.Linq;
public class Test
{
public static void Main()
{
var sw = Stopwatch.StartNew();
var ss = new SortedSet<int>(Enumerable.Repeat(42, 400_000));
Console.WriteLine(sw.Elapsed);
}
}
在个人电脑的.NET Framework上,这段代码需要大约7.7秒执行完成。在.NET Core 2.0上,减少到大约0.013s(改进改变了算法的复杂性,集合越大,节省的时间越多)。
或者在SortedSet <T>上考虑这个例子:
public class Test
{
static int s_result;
public static void Main()
{
while (true)
{
var s = new SortedSet<int>();
for (int n = 0; n < 100_000; n++)
{
s.Add(n);
}
var sw = Stopwatch.StartNew();
for (int i = 0; i < 10_000_000; i++)
{
s_result = s.Min;
}
Console.WriteLine(sw.Elapsed);
}
}
}
.NET 4.7中Min和Max的实现遍布SortedSet <T>的整个树,但是只需要找到最小或最大值即可,因为实现可以只遍历相关的节点。PR dotnet / corefx#11968修复了.NET Core实现。在.NET 4.7中,此示例生成如下结果:
00:00:01.1427246
00:00:01.1295220
00:00:01.1350696
00:00:01.1502784
00:00:01.1677880
而在.NET Core 2.0中,我们得到如下结果:
00:00:00.0861391
00:00:00.0861183
00:00:00.0866616
00:00:00.0848434
00:00:00.0860198
显示出相当大的时间下降和吞吐量的增加。
即使像List <T>这样的主工作核心也有改进的空间。考虑下面的例子:
using System;
using System.Diagnostics;
using System.Collections.Generic;
public class Test
{
public static void Main()
{
while (true)
{
var l = new List<int>();
var sw = Stopwatch.StartNew();
for (int i = 0; i < 100_000_000; i++)
{
l.Add(i);
l.RemoveAt(0);
}
Console.WriteLine(sw.Elapsed);
}
}
}
在.NET 4.7中,会得到的结果如下:
00:00:00.4434135
00:00:00.4394329
00:00:00.4496867
00:00:00.4496383
00:00:00.4515505
和.NET Core 2.0,得到:
00:00:00.3213094
00:00:00.3211772
00:00:00.3179631
00:00:00.3198449
00:00:00.3164009
可以肯定的是,在0.3秒内可以实现1亿次这样的添加并从列表中删除的操作,这表明操作开始并不慢。但是,通过执行一个应用程序,列表通常会添加到很多,同时也节省了总时间消耗。
这些类型的集合改进扩展不仅仅是System.Collections.Generic命名空间; System.Collections.Concurrent也有很多改进。事实上,.NET Core 2.0上的ConcurrentQueue <T>和ConcurrentBag <T>完全重写了。下面看看一个基本的例子,使用ConcurrentQueue <T>但没有任何并发,例子中使用ConcurrentQueue <T>代替了Queue<T>:
using System;
using System.Diagnostics;
using System.Collections.Concurrent;
public class Test
{
public static void Main()
{
while (true)
{
var q = new ConcurrentQueue<int>();
var sw = Stopwatch.StartNew();
for (int i = 0; i < 100_000_000; i++)
{
q.Enqueue(i);
q.TryDequeue(out int _);
}
Console.WriteLine(sw.Elapsed);
}
}
}
在个人电脑上,.NET 4.7产生的输出如下:
00:00:02.6485174
00:00:02.6144919
00:00:02.6699958
00:00:02.6441047
00:00:02.6255135
显然,.NET 4.7上的ConcurrentQueue <T>示例比.NET 4.7中的Queue <T>版本慢,因为ConcurrentQueue <T>需要采用同步来确保是否安全使用。但是,更有趣的比较是当在.NET Core 2.0上运行相同的代码时会发生什么:
00:00:01.7700190
00:00:01.8324078
00:00:01.7552966
00:00:01.7518632
00:00:01.7560811
这表明当将.NET Core 2.0切换到30%时,ConcurrentQueue <T>的吞吐量没有任何并发性提高。但是实施中的变化提高了序列化的吞吐量,甚至更多地减少了使用队列的生产和消耗之间的同步,这可能对吞吐量有更明显的影响。请考虑以下代码:
using System;
using System.Diagnostics;
using System.Collections.Concurrent;
using System.Threading.Tasks;
public class Test
{
public static void Main()
{
while (true)
{
const int Items = 100_000_000;
var q = new ConcurrentQueue<int>();
var sw = Stopwatch.StartNew();
Task consumer = Task.Run(() =>
{
int total = 0;
while (total < Items) if (q.TryDequeue(out int _)) total++;
});
for (int i = 0; i < Items; i++) q.Enqueue(i);
consumer.Wait();
Console.WriteLine(sw.Elapsed);
}
}
}
在.NET 4.7中,个人计算机输出如下结果:
00:00:06.1366044
00:00:05.7169339
00:00:06.3870274
00:00:05.5487718
00:00:06.6069291
而使用.NET Core 2.0,会得到以下结果:
00:00:01.2052460
00:00:01.5269184
00:00:01.4638793
00:00:01.4963922
00:00:01.4927520
这是一个3.5倍的吞吐量的增长。不但CPU效率提高了, 而且内存分配也大大减少。下面的例子主要观察GC集合的数量,而不是挂钟时间:
using System;
using System.Diagnostics;
using System.Collections.Concurrent;
public class Test
{
public static void Main()
{
while (true)
{
var q = new ConcurrentQueue<int>();
int gen0 = GC.CollectionCount(0), gen1 = GC.CollectionCount(1), gen2 = GC.CollectionCount(2);
for (int i = 0; i < 100_000_000; i++)
{
q.Enqueue(i);
q.TryDequeue(out int _);
}
Console.WriteLine($"Gen0={GC.CollectionCount(0) - gen0} Gen1={GC.CollectionCount(1) - gen1} Gen2={GC.CollectionCount(2) - gen2}");
}
}
}
在.NET 4.7中,得到以下输出:
Gen0 = 162 Gen1 = 80 Gen2 = 0
Gen0 = 162 Gen1 = 81 Gen2 = 0
Gen0 = 162 Gen1 = 81 Gen2 = 0
Gen0 = 162 Gen1 = 81 Gen2 = 0
Gen0 = 162 Gen1 = 81 Gen2 = 0
而使用.NET Core 2.0,会得到如下输出:
Gen0 = 0 Gen1 = 0 Gen2 = 0
Gen0 = 0 Gen1 = 0 Gen2 = 0
Gen0 = 0 Gen1 = 0 Gen2 = 0
Gen0 = 0 Gen1 = 0 Gen2 = 0
Gen0 = 0 Gen1 = 0 Gen2 = 0
.NET 4.7中的实现使用了固定大小的数组链表,一旦固定数量的元素被添加到每个数组中,就会被丢弃, 这有助于简化实现,但也会导致生成大量垃圾。在.NET Core 2.0中,新的实现仍然使用链接在一起的链接列表,但是随着新的片段的添加,这些片段的大小会增加,更重要的是使用循环缓冲区,只有在前一个片段完全结束时,新片段才会增加。这种分配的减少可能对应用程序的整体性能产生相当大的影响。
ConcurrentBag <T>也有类似改进。ConcurrentBag <T>维护thread-local work-stealing队列,使得添加到的每个线程都有自己的队列。在.NET 4.7中,这些队列被实现为每个元素占据一个节点的链接列表,这意味着对该包的任何添加都会导致分配。在.NET Core 2.0中,这些队列是数组,这意味着除了增加阵列所涉及的均摊成本之外,增加的还是无需配置的。以下可以看出:
using System;
using System.Diagnostics;
using System.Collections.Concurrent;
public class Test
{
public static void Main()
{
while (true)
{
var q = new ConcurrentBag<int>() { 1, 2 };
var sw = new Stopwatch();
int gen0 = GC.CollectionCount(0), gen1 = GC.CollectionCount(1), gen2 = GC.CollectionCount(2);
sw.Start();
for (int i = 0; i < 100_000_000; i++)
{
q.Add(i);
q.TryTake(out int _);
}
sw.Stop();
Console.WriteLine($"Elapsed={sw.Elapsed} Gen0={GC.CollectionCount(0) - gen0} Gen1={GC.CollectionCount(1) - gen1} Gen2={GC.CollectionCount(2) - gen2}");
}
}
}
在.NET 4.7中,个人计算机上产生以下输出:
Elapsed=00:00:06.5672723 Gen0=953 Gen1=0 Gen2=0
Elapsed=00:00:06.4829793 Gen0=954 Gen1=1 Gen2=0
Elapsed=00:00:06.9008532 Gen0=954 Gen1=0 Gen2=0
声明:所有来源为“聚合数据”的内容信息,未经本网许可,不得转载!如对内容有异议或投诉,请与我们联系。邮箱:marketing@think-land.com
通过企业关键词查询企业涉讼详情,如裁判文书、开庭公告、执行公告、失信公告、案件流程等等。
IP反查域名是通过IP查询相关联的域名信息的功能,它提供IP地址历史上绑定过的域名信息。
结合权威身份认证的精准人脸风险查询服务,提升人脸应用及身份认证生态的安全性。人脸风险情报库,覆盖范围广、准确性高,数据权威可靠。
全国城市和站点空气质量查询,污染物浓度及空气质量分指数、空气质量指数、首要污染物及空气质量级别、健康指引及建议采取的措施等。
输入手机号和拦截等级,查看是否是风险号码