Daniel Whitenack在最近举行的北美2017 KubeCon+CloudNativeCon大会上分享了如何使用TensorFlow和Kubernetes进行基于GPU的深度学习。
他以物体检测为例子介绍了一种典型的人工智能工作流程。该工作流程包括预处理、模型训练、模型生成和模型推理。这些步骤都可以运行在Docker容器里。
模型训练一般是通过框架来完成的,如TensorFlow或Caffe。在这一阶段,GPU可用于帮助提升性能。深度学习在使用TensorFlow或其他框架时,需要借助GPU在图像数据上训练模型。
模型训练可以运行在Kubernetes集群的GPU节点上。Kubernetes为多GPU节点提供了一个非常好的框架,按照如下步骤可实现更好的工作流:
该工作流程也可以用于跟踪哪个版本的代码和数据产生了哪些结果(用于调试、维护和合规的目的)。
Kubernetes为此提供了基础支持,也因为它具备了可移植性和可伸缩性,所以非常适用于机器学习项目。
Whitenack介绍了一个叫作Pachyderm的开源项目,它支持数据管道,并为Kubernetes提供了数据管理层。工作流中一般会包含多个数据预处理和后处理作业。Pachyderm提供了统一的框架用于调度多步骤工作流、数据管理和向GPU分配工作负载。
Pachyderm框架的特性包括:
Whitenack在现场进行了演示,使用Pachyderm和Kubernetes实现了一个AI工作流。示例应用程序实现了图像到图像的转换,将卫星图自动转成地图。他在例子中使用TensorFlow进行模型训练和推理。
如果读者对Pachyderm框架感兴趣,可以参考机器学习示例、开发者文档、Kubernetes GPU文档,或者直接加入Slack通道。
原文来自:infoQ
声明:所有来源为“聚合数据”的内容信息,未经本网许可,不得转载!如对内容有异议或投诉,请与我们联系。邮箱:marketing@think-land.com
通过企业关键词查询企业涉讼详情,如裁判文书、开庭公告、执行公告、失信公告、案件流程等等。
IP反查域名是通过IP查询相关联的域名信息的功能,它提供IP地址历史上绑定过的域名信息。
结合权威身份认证的精准人脸风险查询服务,提升人脸应用及身份认证生态的安全性。人脸风险情报库,覆盖范围广、准确性高,数据权威可靠。
全国城市和站点空气质量查询,污染物浓度及空气质量分指数、空气质量指数、首要污染物及空气质量级别、健康指引及建议采取的措施等。
输入手机号和拦截等级,查看是否是风险号码